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It was predicted recently that sufficiently complex knots on a linear wormlike chain can have a metastable
size, preventing their spontaneous expansion. We tested this prediction via computer simulations for 71 and
10151 knots. We calculated the equilibrium distributions of knot size S for both knots. By using the umbrella
sampling, we were able to obtain the distributions over a wide range of S values. The distributions were
converted into the dependencies of the free energy on the knot size. The obtained free energy profiles have no
pronounced local minima, so there are no metastable knot sizes for these knots. We also performed Brownian
dynamics simulation of 71 knot relaxation that started from a very tight knot conformation. The simulation
showed that knot expansion is a fast process compared to knot displacement along the chain contour by
diffusion.
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I. INTRODUCTION

Over the last 4 decades, knots in polymer chains were a
subject of numerous theoretical and experimental studies
�see Refs. �1,2� for reviews�. In particular, a few theoretical
studies addressed the questions related to knot tightness in
the long chains. It was found that with high probability, knots
are localized in a relatively small portion of the circular
chains �3–5�. The localization increases the total entropy of
the circular chains since the conformational restrictions for
the entire chain are reduced if the knot is localized. For linear
polymer chains, topology is not strictly defined, since any
kind of entanglement can be removed by continuous defor-
mation of these chains without passing the chain segments
through one another. However, if a knot is sufficiently com-
pact compared to the total chain length, its topology can be
specified unambiguously. Such compact conformations of
knots can be obtained experimentally if a knotted linear
chain is stretched �6,7�. Diffusion of knots along stretched
DNA molecules has been studied both experimentally and by
computer simulation �7–9�. It seems natural to suggest, how-
ever, that if the stretching force applied to the chain ends is
eliminated, the knot will expand and eventually disappear
since this unknotting would decrease the bending energy of
the chain and increase its conformational freedom. Thus, it
was quite unexpected when two theoretical studies con-
cluded that the lifetime of compact knots in long polymer
chains with free ends can be very large. Dommersnes et al.
showed that unscreened electrostatic interaction between the
segments of a flexible linear polymer can prevent a tight knot
from expansion �10�. Using computer simulation, they found
that such tight knots can diffuse along the polymer over a
long distance without any signs of expansion. In this case,
the long-range electrostatic interaction makes the total elec-
trostatic energy of a polymer lower if the knot preserves a
tight conformation �10�. Grosberg and Rabin concluded that
such diffusion should take place in a much more general
case, for sufficiently complex tight knots in an uncharged

wormlike chain �11�. A similar idea lies in the base of these
two studies. On one hand, tightening a knot increases the
elastic �and electrostatic, in the case of a charged polymer�
energy and decreases the entropy of the chain segments con-
stituting the knot. Clearly, these factors should promote knot
expansion. On the other hand, the free energy of the entire
chain can be reduced by knot compaction since other seg-
ments of the chain will have more conformational freedom
and smaller elastic-electrostatic energy. Thus, in principle,
knot expansion can be prevented by a free energy barrier and
compact conformations of the knot may become metastable.
Theoretical analysis by Grosberg and Rabin showed that en-
tropic gain of the entire chain from a tight conformation of
the knot may exceed the increase of bending energy associ-
ated with knot tightening �11�. Their conclusion was based,
however, on a scaling analysis and a concept of a tube of a
constant diameter surrounding the knotted wormlike chain,
which may be not sufficiently accurate for this delicate prob-
lem. Therefore, to test the prediction made by Grosberg and
Rabin, we decided to search for a metastable state of knots
on a linear wormlike chain by computer simulations. The
results of our computational analysis are presented in this
paper.

II. METHODS OF SIMULATIONS

A. DNA model

The polymer model used in the Monte Carlo simulations
represents a discrete analog of the wormlike chain. It also
accounts for the excluded volume of the chain segments. The
model chain composed of n persistence lengths is repre-
sented by a chain of kn rigid segments that are cylinders of
equal length, l, where k is a computational parameter. The
bending elastic energy of the chain, Eb, is computed as

Eb =
1

2
kBTg �

i=1

kn−1

�i
2, �1�

where the summation extends over all the joints between the
elementary segments, �i is the angular displacement of seg-
ment i+1 relative to segment i, g is the bending rigidity*Corresponding author; alex.vologodskii@nyu.edu
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constant, and kBT is the Boltzmann temperature factor. The
bending rigidity, g, is directly related to the chain persistence
length, a,

g = a/l . �2�

The volume interaction between the chain segments was
taken into account via their diameter, d �see Ref. �8� for
details�. The polymer model used for the Brownian dynamics
�BD� simulation is very similar to the one described above
�12–14�. It was described in details in our recent publications
�8,15�.

B. Simulation procedure

The simulation of equilibrium properties was based on the
Metropolis Monte Carlo procedure �described in details in
Ref. �16��. The chain topology was checked at each step of
the Metropolis procedure by calculating the Alexander poly-
nomial, ��t�, for t=−1 and t=−2 �17�. Hundreds of millions
of elementary moves were needed to obtain the equilibrium
properties of the knots with accuracy sufficient for the goals
of the current study.

To simulate the equilibrium distribution of knot size,
P�S�, over a wide range of knot sizes, we used the method of
umbrella sampling �18�. In this method, an artificial biasing
potential is added to the chain elastic energy to sample a
particular range of the distribution. The potential, ��S�, was
specified by the equation

��S� = �S , �3�

where � is a coefficient. Changing the value of �, we were
able to simulate the biased probability distributions for dif-
ferent ranges of S. The values of � have to be chosen so that
the biased distributions have sufficient overlapping: we used
� of 0, 0.15, 0.65, 1, 2, and 5. The simulated distributions
were combined to obtain the unbiased P�S� �19�.

BD simulations were based on the standard second-order
algorithm �20�. The hydrodynamic interaction between the
chain subunits was not taken into account in the majority of
the simulation. The time step in the simulation was equal to
400 ps.

C. Determination of the knot size

Through our simulations, we define the knot size as the
length of the shortest subchain containing this knot. To cal-
culate the knot size, we projected the chain conformation to
a plane that is parallel to the direction of the extending force
�although the force was used only for preparing the initial
conformation in the BD simulation�, simplified the knot dia-
gram �see below�, and used the first and the last intersections
on the projection as the boundaries of the knot contour. The
length of the knot contour was calculated over the projec-
tions to 20 different planes parallel to the extending force
and the shortest length was considered as the knot size, S.

Since in some of the chain conformation a flanking chain
occasionally formed trivial intersections on a projection, we
performed a preliminary simplification of the knot projec-
tion. We removed all the trivial intersections, which may
erroneously increase the calculated knot size �Fig. 1�. This
simplification was performed on the table of crossings for the
projection as was suggested in Ref. �21�. The elimination
procedure was performed iteratively on the table of crossings
until the inspection of all crossings brought no more simpli-
fications. An example of knot size determination based on
this procedure is shown in Fig. 2.

Through all the simulations in this study, each tail of the
knot was at least four persistence lengths long. Since equi-
librium properties of a knot cannot go beyond the chain cor-
relation length, we consider this condition on the length of
the knot tails to be sufficient.

III. RESULTS

To study the expansion of knots, we always started from
their compact conformations, which were obtained by apply-
ing a stretching force to the ends of the wormlike chain. The
tightness of the knots on the stretched chain depends on the
dimensionless force, f =Fa /kBT �where a is the chain persis-
tence length and F is the stretching force�, and the volume
interaction between the chain segments. The majority of our
simulation results were obtained for one chosen value of the
second virial coefficient of the intersegment interactions, B.
In the Monte Carlo simulations, we used the discrete worm-
like chain consisting of the rigid cylinders of a particular
diameter, d. The chosen value of d corresponded to the ef-
fective diameter of the double-stranded DNA under physi-
ological ionic conditions, often used in experimental studies
of polymer topological properties. Under these conditions,
when the concentration of sodium ions is close to 0.2 M, the

FIG. 1. Trivial crossings on a knot projection, which are elimi-
nated by the projection simplification procedure.

FIG. 2. Calculation of the knot size. After eliminating all of the
trivial crossings, the entire right coiled part of the chain conforma-
tion was disentangled. The part of the chain contour which was
determined by our algorithm as the knot is marked by the dark tone.

FIG. 3. Knots 71 and 10151, which were used in this study. The
relatively compact conformations of knots shown in the figure are
due to the stretching force of 12 applied to the ends of the model
chain. The actual chains used in the simulation had much longer
flanks which were cut in the figure.
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effective diameter of the double helix is approximately 10
times smaller than its persistence length, a �22�. In the
Brownian dynamics simulation, the hard core potential was
replaced by the Debye-Hückel potential, which gives the
same value of B as the chosen hard core potential �23,24�. In
a separate simulation, which we wanted to start from a
tighter knot, we reduced the chain diameter to 0.02a.

The discrete wormlike chain of the rigid cylinders, used in
the Mote Carlo simulation, has k cylinders per persistence
length, a, and approximates the continuous wormlike chain.
Obviously, the approximation of the wormlike chain by the
discrete model improves when k increases. On the other
hand, larger values of k slow down the simulation substan-
tially. The minimum value of k that provides an accurate
approximation for the wormlike chain depends on the con-
formational property of interest and should be determined
case by case �see Ref. �16� for review�. We performed such
investigation for the stretched knotted polymer chains. The
maximum value of f which we used here was equal to 100
for the chain diameter of 0.1a and 250 for d of 0.02a. An
equilibrium set of conformations for the polymer chain
stretched by these forces were simulated for two knots of
different complexity, 71 and 10151, used in this study �Fig. 3�.
Under this force, the knots are very tight, so their length-to-
diameter ratio only slightly exceeds the corresponding mini-
mum values, p �25�. We see from Fig. 4 that the extension
for both knots does not change if k is larger than 10. Since
even smaller values of k provide good approximation of the
wormlike chain at lower stretching forces �26�, we used this
value of k throughout all of the simulations in this study.

A. Equilibrium size of knots under
the stretching force

It was predicted that the dependence of the equilibrium
knot size on f could be nonmonotonic if a metastable state of

the knot exists �11�. To test the prediction, we simulated the
distributions of knot conformations stretched by force ap-
plied to the chain ends. Since identical distributions for a
particular value of force were obtained both by extension
from a smaller size of the knot and by tightening from a
larger size, we believe that the shown average sizes of knots,
�S�, correspond to the thermodynamic equilibrium. The
simulated values of S over a range of stretching forces are
shown in Fig. 5. One can see from the figure that for both
knots, the average size increases monotonically when the
force diminishes. According to the theoretical prediction, the
metastable state should correspond to a knot size smaller
than ap �11�. At force of 1.2, the values of �S� /a for both
knots exceed p, which is close to 31 and 40 for knots 71 and
10151, correspondingly �25�. Clearly, the simulation revealed
only monotonic dependences of S on f �Fig. 5�. It cannot be
excluded, however, that a metastable size of the knots was
not detected in the Monte Carlo simulation of the equilib-
rium ensembles of the chain conformations for the chosen set
of the stretching force. Therefore, in the next section, we
addressed the existence of the metastable knot size directly.

B. Free energy of knots as a function of their size

We calculated the free energy of the knotted chain as a
function of the knot size, G�S�, for knots 71 and 10151. Our
approach was based on the simulation of the equilibrium
distribution of S, P�S�, which is directly related to G�S�,

G�lk� = − kBT ln P�S� . �4�

According to our Monte Carlo simulation, knot size al-
ways increases when the stretching force diminishes �see
Fig. 5�. Therefore, to restrict the distribution by a finite range
of S, we calculated P�S� and, correspondingly, G�S�, for the
chains extended by a small stretching force �1.2�. To cover a
large range of S values, we used the umbrella sampling �see
methods� �18�. The functions G�S� obtained in this way for
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FIG. 4. Approximation of the wormlike chain by its discrete
analog. The average sizes of two knots obtained under the stretch-
ing forces of 100 �filled symbols� and 250 �open symbols� are plot-
ted for knots 71 �circles� and 10151 �triangles� as a function of the
number of straight segments constituting the persistence length of
the discrete wormlike chain, k. Data show that even for this stretch-
ing force, the limiting properties of the knots are obtained for k
equal 10.
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FIG. 5. Average sizes of knots 71 �circles� and 10151 �triangles�
under dimensionless stretching force f applied to the chain ends.
Data were obtained by the Monte Carlo simulations of equilibrium
ensembles of chain conformations for d of 0.1a �main plot� and
0.02a �insert�. Statistical error of the calculations is smaller or close
to the size of the symbols.
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knots 71 and 10151 are shown in Fig. 6. We see from the
figure that there is no free energy minimum for S�ap for
either of the investigated knots. The broad minimum of G�S�
at S�ap is due to the stretching force applied to the chain
ends. Since the additional stretching force only slightly in-
creases G�S� when S increases, it cannot eliminate a local
minimum of G�S� if such a minimum exists in the absence of
the stretching force. Thus, our Monte Carlo simulation shows
that there are no metastable sizes for knots 71 and 10151 in
the range of S less than ap, where it was predicted �11�.

C. Dynamics of knot expansion

It is interesting to investigate how fast the knot expansion
occurs in the absence of the stretching force. To address this

question, we performed a Brownian dynamics simulation of
the process. As tested in the DNA studies, the method pro-
vides an accurate quantitative description of large-scale dy-
namic properties of the wormlike chain �16�. To save com-
putational time, we did not account for hydrodynamic
interaction between chain segments in the current simulation.
However, our estimations showed that accounting for the hy-
drodynamic interaction makes the relaxation process a few
times faster �data not shown�. Therefore, accounting for the
hydrodynamic interaction would not essentially change a
semiquantitative picture presented below.
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FIG. 7. Brownian dynamics simulation of knot expansion. �a�
The shown dependence of 71 knot size on time was obtained by
combining four spans of the expansion 2.5 ms each. The initial
conformations for each span were obtained by applying a proper
stretching force to the chain ends. The simulation corresponds to the
chain effective diameter of 0.1a. The average displacements of the
knot center of mass over the time spans are shown at the button of
the plot. �b� Initial expansion of very tight conformation of 71 knot
created by the stretching force of 250. The simulation corresponds
to the chain effective diameter of 0.02a.
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FIG. 6. Free energy of knots 71 and 10151 as a function of their
sizes, S. The linear chain containing a chosen knot was stretched by
a small force of 1.2. The umbrella sampling was used in the Monte
Carlo simulation to obtain G�S� over the wide range of S �see meth-
ods�. The broad minimum of G�S� seen for both knots is due to the
small stretching force �of 1.2� applied to the chain ends.
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For the current simulation, the initial compact conforma-
tions of knots with stretched flanking subchains were created
by the Monte Carlo simulation in the presence of the stretch-
ing force, which was adjusted to obtain an equilibrium set of
conformations with a chosen average knot size. There was no
stretching force during the Brownian dynamics simulation of
knot relaxation. Kinetics of the 71 knot expansion is pre-
sented in Fig. 7. This expansion kinetics was obtained by
combining the simulations started from four different sizes of
the initial conformation. It was not possible to extend the
simulation of the knot expansion beyond each of the shown
time spans because coiled conformations of the flanking
chain compromise the calculation of the knot size. Each of
the four spans of knot expansion shown in Fig. 7 represents
the average over 28 independent trajectories. We also found
that the rate of knot expansion depends on the length of the
flanking chains. This is illustrated in Fig. 8, which shows the
results of three sets of simulations performed for chains of
different lengths. In this simulation, the initial conformations
were obtained under the same stretching force and the knot
was located at the chain center. This dependence of the knot
expansion on the chain length is understandable, if we take
into account that the total relaxation time of the chain in-
creases with its length, and earlier or later the knot expansion
involves the entire chain.

We compared the rate of knot expansion to the diffusion
of its center. At the bottom of Fig. 7�a�, we showed the root

mean square of the displacement of the knot center of mass
�also averaged over 28 independent trajectories� during each
of the four spans of expansion. One can see from the figure
that the diffusion rate is slower or comparable to the rate of
knot expansion.

IV. DISCUSSION

This study was inspired by a striking prediction that there
should be a metastable size of a complex knot that prevents
its expansion in the linear uncharged wormlike chain �11�.
Of course, the prediction should be equally valid for electri-
cally charged but strongly screened polyelectrolytes, such as
double-stranded DNA molecules in moderate and high salt
concentrations. The theoretical analysis, however, was based
on a semiquantitative treatment of the problem and, there-
fore, its computational testing was highly desirable. We per-
formed such testing in this study. Of course, there are some
limitations in our simulations as well. First, we considered a
discrete wormlike chain. We showed, however, that the cho-
sen discretization is sufficient for modeling the properties of
knots in the wormlike chain. Second, we performed the
simulations for only two randomly chosen knots, 71 and
10151. The theoretical prediction, however, should be equally
valid for all sufficiently complex knots and the chosen knots
satisfy the criteria of complexity suggested in Ref. �11�.

Our data showed no traces of metastable states, which
could prevent the knot expansion on the linear chain. We
found that for both knots, the average knot size monotoni-
cally decreases when the stretching force applied to the chain
ends increases, contrary to the theoretical prediction. We cal-
culated the free energy of the knotted chain as a function of
the knot size and found that for both knots, the free energy
decreases monotonically when the knot size increases. Fi-
nally, using Brownian dynamics simulation, we showed that
the rate of 71 knot expansion is comparable to the rate of its
displacement by diffusion. If we assume that this result is
applied to other knots of comparable complexity, we should
conclude that knot expansion is a fast process. We think that
the data obtained in this study strongly argue against the
existence of a metastable size of complex knots on the linear
wormlike chain.
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